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Abstract. Using the concept of covalent molecular orbitals for neutrons and the known properties of the
local α + 16O potential the formation of asymmetric molecular structures in neon isotopes is discussed.
Experimental evidence for parity doublets in 21Ne is reviewed and a corresponding band structure for the
states in 21Ne at moderate excitation energy of Ex = 0–8 MeV is proposed. The structure of some bands
can be interpreted as consisting of an instrinsic asymmetric (4He + 16O) structure bound by a covalent
neutron in σ and π orbitals. An extension of the observed structures to symmetric molecular structures
in isotopes of Mg and heavier nuclei is suggested. In particular shape isomers in isotopes of magnesium,
namely (He)2O molecules, can be predicted and an extended Ikeda diagram is proposed.

PACS. 21.10.-k Properties of nuclei; nuclear energy levels – 21.60.Gx Cluster models

1 Introduction

The physics of molecular orbitals for nucleons (mostly
neutrons) has been developed in the last decades and has
been successfully applied in the description of transfer pro-
cesses of neutrons and protons in heavy-ion reactions at
low energy [1–8]. In these models valence particles and
cores are defined, with the cores being typically strongly
bound clusters. The valence nucleons move in the field of
two clusters and some concepts of molecular physics with
atoms (there named LCAO) can be applied. The method
of linear combinations of nucleon orbitals (LCNO) to de-
fine the two-centre states has been used for cases with
12C and 16O cores, where the concept of strongly bound
cores and loosely bound neutrons is applicable [2,4,5,7].
Also in nuclear-structure calculations this approach has
been used to identify molecular structures in beryllium
and boron isotopes [9]. In addition, this concept has been
applied to α-cluster nuclei in ref. [10] for α-particles (called
there again LCAO).

The concept of molecular orbitals has been used
mainly in a dynamical theory to describe neutron transfer
reactions between light nuclei in systems like 12C + 13C,
13C + 14C, 13C + 13C, 17O +13C, 17O +16O and oth-
ers. The reaction calculations are performed in coupled
reaction channel approaches, where the LCNO serves as
an alternative (complete) set of basis states for transfer
processes and the description of phenomena like Landau-
Zener transitions and enhanced fusion processes can be
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achieved [2,4,5,11,6]. The validity of the adiabatic ap-
proximation has been demonstrated for many reactions at
energies close to the Coulomb barrier involving low-lying
scattering states. The condition for quasi-stationary (or
stable) molecular states with long lifetime, where a repul-
sion occurs at smaller distances, is not fulfilled in these
cases. The interaction potentials between the cores have
usually been determined from the analysis of elastic scat-
tering; in most cases they become strongly attractive once
the Coulomb barrier has been passed. The strongly attrac-
tive mean-field potential between the two cores at small
distances leads to a fusion process and to the formation
of a compound nucleus.

Appropriate conditions for the formation of stable or
quasi-stationary molecular states can easily be formu-
lated. We need: a) strongly bound cores; b) a weakly
attractive core-core potential which becomes repulsive at
small distances; c) weakly bound single-particle orbitals of
valence neutrons in order to guarantee large amplitudes of
covalent particle wave functions at larger distances in the
overlap region; d) large transfer probability, which is typ-
ically reached if the valence states are in the resonance or
in a quasi-resonance matching condition between the two
states of the separated centres.

The beryllium isotopes can be considered as well-
established cases of covalently bound nuclear molecules [9,
12], where the two α-particles are bound by neutrons. This
fact gives rise to very characteristic isomeric structures,
which are based on the σ and π binding neutron orbitals
constructed from the p3/2 orbits in 5He of the separated
centres. This feature has also been well demonstrated
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by “model-independent” calculations using the method of
Antisymmetrised Molecular Dynamics (AMD) of Kanada-
En’yo and Horiuchi [13–15]. Pronounced molecular struc-
tures are observed a few MeV below the threshold for the
decay into α-particles and neutrons. These states in the
beryllium isotopes (9Be, 10Be and 11Be) are dimers in the
sense of the atomic molecules, with well-separated centres
and molecular orbital structure for the valence particles.
In addition to the Be isotopes, dimer structures have been
identified in their isobaric analogue states —in the boron
isotopes [12].

I will show in the present work that another favourable
case for covalent molecular binding via neutron orbitals
can be found in the α + 16O system. In this case, the par-
ticular symmetry due to two identical cores, which occurs
in the beryllium isotopes is not valid. Other characteris-
tic symmetries of intrinsically asymmetric molecules will
become apparent. These are discussed in the text books
on molecular physics by Herzberg [16], and by Bohr and
Mottelson [17] for nuclei with intrinsic octupole deforma-
tion. A more general discussion of reflection asymmetric
shapes in nuclei up to the heaviest elements has been given
by Butler and Nazarewicz in ref. [18].

I will restrict myself to the detailed discussion of pos-
sible evidence for molecular structure in 21Ne, which can
serve as a building block for molecules based on the
α + 16O clustering, and related to the instrinsic octupole
shape of this two-cluster system. In sect. 2 the structure
of 20Ne is shortly reviewed, which will show a coexistence
of quadrupole deformed bands with those based on the
α + 16O cluster structure; section 3 gives a discussion of
the possible molecular wave functions of some states in
21Ne. The available information on the structure of 21Ne is
used to build rotational bands, which will give evidence for
molecular structures. Based on these results, strongly de-
formed molecular states can be predicted in other neutron-
rich isotopes of neon, magnesium and in heavier nuclei
at excitation energies close to the thresholds for the de-
composition into clusters plus covalent neutrons, in close
analogy to the Ikeda diagram [19,20]. In sect. 4 possi-
ble alternative interpretations in the framework of the de-
formed shell model (Nilsson model) are shortly discussed.
In sect. 5 molecules in the form of (He)2O (which could be
named “nuclear water”) or (O)2He are proposed, as well
as other structures based on the covalent neutron bonds
and the α + 16O potential. The results will allow the de-
sign of an “extended Ikeda” diagram.

2 Structure of the neon isotopes 20-21Ne and
the α + 16O potential

2.1 Structure of 20Ne

The scattering of α-particles on 16O has been the subject
of intense study up to the recent years. I refer as a sur-
vey to the work of Ohkubo et al. [21]. There, it is shown
that a shallow local potential, which is phase equivalent
to the deep potential obtained in a double-folding model,

Fig. 1. Example of shallow local potentials for the interaction
of α-particles with 16O, fitting the elastic scattering and the
resonances in 20Ne, from ref. [21].

gives a very good description of the angular distributions
of elastic scattering as well as of some states of 20Ne. In
this nucleus the ground state and the excited bands ex-
hibit strong α-cluster structure, which are well reproduced
in the cluster model. The corresponding local shallow po-
tential, which is l -dependent, is shown in fig. 1. These
are obtained by using the supersymmetric transformation
(introduced by Baye [22] in 1987) from deep potentials,
as they are obtained in semi-microscopic models like the
double-folding model [23,24]. A phenomenological analy-
sis using the optical model and a form factor of (Wood-
Saxon)-squared shape for the real potential has also been
very successful in describing a large variety of angular dis-
tributions of α + 16O scattering [24,25]. Inspecting fig. 1,
we note that the even and odd parity potentials are differ-
ent, and that there is an overall dependence on the angular
momentum of these potentials (apart from the trivial de-
pendence due the centrifugal term). The strong repulsion
at small distances can be interpreted (similar to the case
of the α + α system) as being due to the Pauli princi-
ple acting at small distances in this system. With a small
adjustment, these shallow local potentials can be used to
describe bound states of 20Ne as well as the corresponding
resonances and scattering states [21].

The structure of the 20Ne nucleus has also been dis-
cussed in the frame of the deformed Nilsson model, a dis-
cussion of this approach will be given in conjunction with
the 21Ne structure in sect. 4. It is well known that the in-
trinsic cluster structure of 20Ne corresponds to an octupole
deformation and thus no definite parity for the intrinsic
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Fig. 2. Structure of states in 20-21Ne and 26-28Mg based on
the α + 16O cluster model with covalent valence neutrons. For
intrinsically reflection asymmetric shapes, parity doublets with
a possible splitting determined by the nonorthogonality ∆ will
be observed.

state can be defined. Such reflection asymmetric states
have been discussed over many decades [18,26], and re-
cently also for some other light nuclei like 18O [27] and
19F [28]. The projection K of the total angular momen-
tum, is the relevant good quantum number. The states
of good parity are obtained by forming linear combina-
tions of two configurations with two possible signatures,
as schematically shown in fig. 2. In this way two bands,
“inversion doublets”, of an instrinsic reflection asymmet-
ric octupole with K = 0 and parities π = (+ and−) are
formed. The level scheme of 20Ne is well known, there are
two conspicuous bands with K = 0+ and K = 0− (see
fig. 4 below), which are also well described by the local
α + 16O potentials of fig. 1, as summarised in ref. [21].
The intrinsic asymmetric state of the 20Ne would have
produced one band with Iπ = J (−)I

and with states of
alternating parity, however, the nonorthogonality matrix
element ∆, which connects the two configurations shown
in fig. 2, is large in this case leading to a splitting of ap-
proximately 5 MeV between the bands with the two par-
ities π = (+) and π = (−). The negative-parity band
starts with a 1− state at 5.787 MeV (there is no 0− state
allowed in this case). The higher-lying K = 2− band start-
ing at 4.966 MeV is related to a single-particle excitation
from the p-shell into the sd-shell, and the corresponding
states are not populated in 16O(7Li, t) α-transfer reactions,
whereas the cluster bands are strongly populated [29]. The
higher bands (of natural parity) correspond to excitations
from the sd-shell into the fp-shell, their cluster struc-
ture is also confirmed in α-transfer reactions [29]. Calcu-
lations based on the antisymmetrised molecular dynamics
approach by Horiuchi [20] also show the pronounced clus-
tering in the two parity split bands. It is actually much
more pronounced in the K = 0− band.

In the cluster model, a transition between the two con-
figurations can be defined, this can be a tunnelling pro-

cess (similar to that of the nitrogen atom in the famous
amonia molecule NH3, with an instrinsic asymmetric con-
figuration), or by a rotation by 180 degrees in the plane
of the symmetry axis. This rotation can actually be visu-
alised as being supported by the local α + 16O potential.
The explanation in the potential model is that the phase
equivalent, local and shallow potentials are different for
the two parities, which leads to the splitting of the two
bands with K = 0. Other bands in 20Ne are obtained in
the cluster model by considering higher nodal wave func-
tions in the relative motion [20,21].

2.2 Binding energies, the quasi-resonance condition in
21Ne

I use the cluster model of 20Ne to discuss states in 21Ne
with a molecular structure based on an additional cova-
lent neutron. For this purpose, the neutron binding ener-
gies and the various thresholds are shown in fig. 3. The
energy scale of the scheme is arranged in such a way, that
the thresholds for α + 16O + x neutrons are aligned on
a common horizontal line. From this line the binding of
particular cluster states in the system can be read. The
binding energy for the α-particle in 20Ne is 4.730 MeV.

Figure 3 also shows the energies of the relevant single-
particle states (or the resonances) for the two separate
centres, namely for the decomposition into (5He + 16O)
or into (α + 17O). For the formation of the two-centre
molecules with the structure (α + 16O + x neutrons), the
states of the valence neutron in the systems 5He and in
17O must be considered. 5He has an unbound state, a p3/2

resonance at an energy of 890 keV (width 600 keV). The
ground state of 17O is a d5/2 state with a binding energy
of 6.7 MeV; this value is much larger than that for the
resonant ground state in the (4He + n) system and thus
cannot be considered for a covalent binding situation; this

Fig. 3. Illustration of the thresholds (aligned to the same level)
for the neon isotopes 20-22Ne in the α + (x neutrons) + 16O
cluster model. The Jπ-values of band heads in 20-21Ne with
their K quantum numbers are indicated.
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would correspond to the case of an ionic configuration as
in atomic molecules, a case which does not give binding ef-
fect in nuclear systems. The case of equal binding energies
in the two separated fragments (which is trivially fulfilled
for the case of identical cores) is the optimal condition for
the covalent binding, which is called the resonance condi-
tion [30,31]. As indicated in fig. 3 it happens that a quasi-
resonance between the two states is realised in the α + 16O
system for a covalent neutron with the mentioned p3/2 res-
onance in 5He and the d3/2 resonance in 17O at 0.941 MeV
(width 96 keV). This fact will be used in the construction
of the molecular wave function as explained below. It also
happens that this resonance condition is identical to the
well-known matching conditions in transfer reactions [30].
Another feature related to the dynamical matching as-
pect is the fact, that the transfer from a d3/2 orbit to a
p3/2 orbit is favoured in quasi-stationary cases, because it
corresponds to the “figure 8” trajectory [30]. In this cir-
cumstances also the tangential matching in the instrinsic
motion of the valence nucleon is assured.

3 Molecular structures of the isotope 21Ne

3.1 Molecular wave functions

In order to construct a molecular wave function in the
cluster model for 21Ne, we use some known principles of
the method of linear combination of nuclear orbitals, the
LCNO (known as LCAO in atomic molecules [1,5,9,16]). I
define the total Hamiltonian so as to disregard the internal
structure of the cores 16O and 4He and treat explicitly the
interaction of the valence neutron with the two cores,

Htot = Hα + T (rn α) + Vn,α(rn α) + T (rn 16O)
+H16O + Vn,16O(rn 16O) + T (R) + V16O,α(R) . (1)

The distance vector R is the coordinate between the
two core centres. The coordinates for the neutron, rn α

and rn 16O, point to the centres of the two clusters. The
core-core potential already mentioned is V16O,α(R), and
the interaction of the neutron with the cores Vn,α(rn α)
and Vn,16O(rn 16O) is obtained by finding the solutions for
the single-centre configurations. In dynamical calculations
there occurs a serious problem to find solutions for such a
two-centre system due to the recoil terms (due to T (R))
induced by the finite mass of the valence particle. This
point will not be discussed here, see however refs. [2,5,
28]. The two-centre solutions can be constructed using the
LCNO approach, which uses a linear combination of states
in 17O and 5He (we use the two resonances in 17O and 5He,
which are in a quasi-resonance condition as stated above),
with the projection K of the spin as principal quantum
number,

ΦK
LCNO(R, rn)=

1√
2(1 + δK(R))

×[
an αψαψ16OφK

n (rn α, p3/2)

+(−)p1an16Oψαψ16OφK
n (rn16O, d3/2)

]
. (2)

The coefficients an α and an 16O will be almost equal
in the case of resonance sharing of the valence particle,
the factor (−)p1 carries the sign of the two combina-
tions, which form the new states, which replace the orig-
inal single-centre states. For the two single centres the
solutions are φK

n (rn α, p3/2) and φK
n (rn 16O, d3/2), and the

nonorthogonality δK(R) is given by their overlap, with
(rn α − R) = rn 16O:

δK(R) = (−)p1

∫
φ∗K

p3/2
(rn α)φK

d3/2
(rn α − R)drn α . (3)

The wave function, eq. (2), corresponds to a reflection
asymmetric state and no instrinsic parity can be defined.
As quantum numbers we have the projections on the sym-
metry axis: a) of the total angular momenta, K, and b) of
the orbital angular momenta (Λ) of the valence particle
denoted as in atomic physics, by σ for Λ = 0, and π for
Λ = 1. States with total spin I and good parity Π are
constructed by making the linear combinations (two signs
(+) and (−) are possible!) with the signatures = (−)I+K ,

Ψ I,Π
KM (R, rn)=N(∆K)

[
ΦK

LCNO(R, rn)DI
MK(ω)

+(−)I+K+p2ΦK
LCNO(R, rn)DI

M−K(ω)
]
, (4)

with
N(∆K) =

1√
2(1 + ∆K)

. (5)

This construction is schematically shown in fig. 2,
where the states of good parity for 20-21Ne result from
a superposition of two reflection asymmetric structures.
As illustrated in fig. 2, a new nonorthogonality term ∆
may appear, which must be included into the normalisa-
tion N(∆) as it was done in eq. (2). If we use the cited
d3/2 and p3/2 orbitals, we obtain two possible values of
the K quantum number K = 1/2 and 3/2 for the molecu-
lar configurations, with two parities. These are the parity
doublets for an asymmetric top with K �= 0, as discussed
by Herzberg [16] or by Bohr and Mottelson [17]. Note that
the splitting of the parity doublets is now related not to
the overlap δK(R) of eq. (3), but to the probability for
a transition between the two shapes, which are generated
by a rotation of 180◦ (or the two signatures), namely by
∆, as illustrated in fig. 2. For a completely rigid intrinsic
structure, the two bands (e.g., K = 1/2+, 1/2−) will be
almost degenerate (∆ � 0), such cases are known in heavy
nuclei, for example in 225Am and more cases are discussed
in ref. [18]. The relation to the deformed Nilsson orbit is
discussed by Leander and Sheline [32] and I will come back
to this in sect. 4.

A different cluster model approach for 21Ne has been
pursued by Descouvement [33]. In this work 21Ne is de-
scribed by α-particle configurations directly related to the
17O ground state, and these are superimposed by config-
urations where the neutron is bound to the 20Ne ground
state. In this way, the octupole structure and the intrinsi-
cally reflection asymmetric molecular structure proposed
here is not obtained (actually also in this approach the
description of the negative-parity states is rather unsatis-
factory).



W. von Oertzen: Molecular structures in the α + 16O system 407

3.2 Level structure of 21Ne

In this section an attempt is made of a complete spec-
troscopy of 21Ne, namely to put the known states of
21Ne into rotational bands, the negative-parity states are
placed in parity doublets with intrinsic parity violation
corresponding to the molecular structure discussed above.
This implies a separation of states in 21Ne into those re-
lated to the intrinsic octupole shape in 20Ne, and the re-
maining states are then tentatively put into bands cor-
responding to the normal (quadrupole deformed) Nilsson
orbit approach. This will correspond to a coexistence of
octupole deformed states and quadrupole deformations.
The spectroscopic studies for this mass range are typi-
cally more than 15-30 years old [34–38], however, quite
detailed knowledge is available for many states and has
recently been summarised for the heavier nuclei in the
sd-shell by Roepke [36]. However, the odd parity states
have usually been omitted in the discussion, because they
go beyond the usual shell model scheme. In the molecu-
lar model based on the (α + 16O) cluster model with one
neutron shared in the p3/2 or d3/2 resonances, we will now
have two main bands as parity doublets with K -values of
1/2 and 3/2, and there appears a natural explanation for
the negative-parity bands. The two K = 1/2 bands should
exhibit very strong Coriolis decoupling structures, a fact
which can be used to make configurational assignments.
A second K = 1/2+ shows no Coriolis decoupling effect
(see fig. 4 and the discussion below).

The revision of the band structure of states in 21Ne is
supported by the fact that some of the original configura-
tion assignments, which were used for the K = 1/2 bands,
gave large contradictions with the predicted values of the
decoupling parameters and the band structure in the ex-
perimental energy spectra appeared irregular. This is, in
particular, the case for negative-parity states, which were
usually not considered in detail [34–36]. Thus, a very con-
spicuous discrepancy is found in the calculated transition
probability from the negative-parity state with Jπ = 1/2−
(at 2.78 MeV) to the Jπ = 3/2+ ground state. This E1
transition turns out to be retarded by more than three or-
ders of magnitude, the lifetime with 110 ps! for this 1/2−
state is unusually long. The E1 decay into the ground state
is strongly hindered, as noted in [34]: “A retardation of
this extreme magnitude is difficult to explain with either
the Nilsson or the shell models as already noted by Warbu-
ton et al. [37]”. Using the molecular picture, the negative-
parity states appear as partners in parity doublets, due
to an intrinsic octupole shape and form a different class
of states, with some possible configuration mixing in the
positive-parity states.

For a complete spectroscopy, the following rotational
bands should be present in 21Ne:

a) Two parity doublets related to the octupole (molec-
ular) shape, as bands with K = 1/2 and 3/2, with (−) and
(+) parity. b)The remaining states should be arranged
into bands, which are due to “normal” reflection sym-
metric Nilsson model configurations. Here the low-lying
states of 25Mg are used as a guide-line, there the low-
est states are [202,5/2],[211,1/2] and [202,3/2]. For the
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Fig. 4. Plot of the excitation energies of states in 20Ne and
21Ne showing molecular parity doublets forming rotational
bands, as well as “normal”(quadrupole deformed) K = 1/2,
3/2 and 5/2 bands. This compilation places all low-lying
negative-parity states in 21Ne as belonging to parity doublets,
as expected from signature splitting of the structures shown in
fig. 2. The coefficients a and b are given for the band structure
of the K = 1/2 parity doublet.

[220,1/2] and [211,3/2] Nilsson orbits we expect in addi-
tion two bands of positive parity with K = 1/2, 3/2, which
may mix with the two positive-parity bands cited above,
and, c) one [202,5/2], K = 5/2 band.

According to these expectations, the arrangement of
states in fig. 4 is made differently as compared to ref. [35],
actually in their work the negative-parity states are not
discussed in detail, and in addition they state that: “the
number of levels with positive and unassigned parity
exceeds the shell model prediction for the number of
positive-parity states in this excitation energy region”.
The presently proposed ordering into bands tries to incor-
porate the concepts described above and the knowledge on
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the states of the Nilsson model as they appear in the low-
energy spectrum of heavier sd-shell nuclei. Figure 4 shows
the levels of 21Ne arranged as parity doublets, which corre-
spond to the suggested intrinsic molecular rotational band
structure, plus the additional states.

The K = 1/2 bands for the molecular configura-
tion are expected to show pronounced Coriolis decoupling
patterns, which are not related to the deformed Nilsson
model, but rather to the two-centre configuration (as in
the case of the of 9,11Be discussed in ref. [12]). For the
K = 1/2 bands we have the unique possibility to use the
Coriolis decoupling pattern to identify molecular cluster
states. Such strong Coriolis decoupling patterns, as shown
here for K = 1/2 bands, are also obtained for the case of
19F in a cluster model study by Dufour and Descouve-
ment [28]. The expression for the energy of the rotational
band including the Coriolis decoupling parameter a and
the inertia parameter b is given by

E(J) = E0 + b
[
J(J + 1) + a(−)J+1/2(J + 1/2)

]
. (6)

The bands with K = 1/2+ and K = 1/2−, indeed,
are almost degenerate and show a strong Coriolis decou-
pling. The figure shows that the moments of inertia are
very similar to the two K = 0 bands in 20Ne. For the
K = 3/2 parity doublet, the proposed two bands are in-
dicated in the middle frame, the K = 3/2+ ground state
band and a band with K = 3/2− starting at 4.3 MeV.
These two bands appear with a slightly reduced splitting
as compared to the K = 0+,− bands in 20Ne. The other
states are also compiled in fig. 4 so as to form bands with
K = 1/2, 3/2 and 5/2, according to the usual Nilsson
model. There appears a second K = 1/2+ band without
Coriolis coupling. The fact that the decoupling parame-
ter a and the inertia parameter b are the same for the
two members of parity doublets can be interpreted in the
spirit of the work of Jolos and von Brentano [39,40] on
parity split bands. For two stable octupole minima with
β3 �= 0, the two bands are expected to have equal moments
of inertia and the same Coriolis decoupling pattern, this
is actually the case of 21Ne. Following the same picture
of refs. [39,40], the decay of the 1/2− state to the ground
state must be (as already mentioned) strongly hindered,
because it will involve a change from a negative β3 to a
positive value. These two shapes are well separated by
an internal barrier, which explains also the small energy
splitting of the K = 1/2 doublet.

We can try to identify the intrinsic structure of the
suggested molecular configurations for the K = 1/2 and
K = 3/2 parity doublets. For K = 1/2 the orientation
of the orbital angular momentum of the single-particle
orbitals with l = 2(d2/3) and l = 1(p2/3) must have domi-
nantly a σ bonding situation (projection on the symmetry
axis m = 0). This configuration gives a strong concentra-
tion of the covalent neutron between the two cores. With
this configuration we may indeed have a small transition
probability measured by the nonorthogonality ∆ as de-
fined in fig. 2, the passage of the α-particle on the other
side of the core is hindered. For the K = 3/2 case, a co-
valent orbit of the π type (l-projection, m = 1) must be

σ − orbital

π − orbital

p     3/2 d
3/2

m = 0

m = 1

Fig. 5. Overlap of σ- and π-type orbitals consisting of m = 0
and m = 1 components of the d3/2 and a p3/2 configurations
of the single centres. The former is responsible for the K =
1/2 parity doublet in 21Ne, the latter for the K = 3/2 parity
doublet. The corresponding bands are shown in fig. 4.

involved, the neutron density distribution would then be
concentrated outside of the symmetry axis and a splitting,
as in the case of K = 0 bands in 20Ne, can be expected.
These two cases are schematically shown in fig. 5. The mo-
ments of inertia seem to be still dominated by the 20Ne
structure, a fact which can be explained from the shape
of the local core-core potentials in fig. 1, which show a
more pronounced minimum, and a cluster bound state, as
opposed to the case of the α-α potential [21]. In the lat-
ter cases the moments of inertia in the isotopes 9-11Be do
change with the configurations [12].

4 Relation to deformed shell model
configurations

After compiling the four bands with K = 1/2 and K =
3/2, there are more positive-parity states; as already men-
tioned there would be at least three further bands with
K = 1/2, 3/2 and 5/2 based on the d5/2 and s1/2 or-
bits and a reflection symmetric deformed core. Certainly,
we must expect a mixing between states of the two con-
figurations, although there may be a barrier in the cor-
responding shape variables between the classes of states.
The number of states in particular those above 5 MeV
excitation becomes quite large, however, the present ap-
proach gives a basis to explain all known states in the
low-energy excitation region (up to 6–7 MeV). In the up-
per range of 6–12 MeV excitation energy the assignments
of spin and parity to the states are uncertain. An attempt
to place also the majority of the remaining known levels
in terms of rotational bands is included in fig. 4.

We can define a second K = 1/2+ band starting at
an excitation energy of 5.68 MeV. States of this band
do not show any Coriolis decoupling; I can identify this
band with the [211]1/2 configuration, in fact a correspond-
ing K = 1/2 band in 25Mg starting at 0.585 MeV has a
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vanishing Coriolis decoupling factor as cited on p. 284 in
ref. [17]. The K = 5/2 band, also shown in fig. 4, is be-
low the K = 1/2 band in close analogy to the situation
in the cited 25Mg nucleus. For the K = 3/2 band head
I have chosen the state at 5.549 MeV slightly below the
K = 1/2 band head, its moment of inertia appears larger.
However, these assignments must be taken as conjectures,
which can possibly be put on firmer basis by doing a com-
plete spectroscopy for this nucleus with a large gamma-
detector ball. Many of the states used do not have firm
spin and parity assignments, and many states are above
the particle threshold, their spins are partially inferred
from their intensity from compound nucleus reactions like
the 12C(11B,d)21Ne reaction of ref. [41].

The deformation of 20Ne, based on the concept of
the deformed microscopic-macroscopic model [17,42], has
been extensively discussed in the literature. In the lat-
ter work also axially asymmetric and reflection asym-
metric cases are discussed. Octupole deformations and α-
particle structure in light and heavy nuclei is produced
by mixing orbits of opposite parity. In heavy nuclei, in-
deed, a very large configuration mixing across two major
shells is needed to obtain the spectroscopic factors for α-
particles [18]. If we want to discuss the structure of the
parity doublets in 21Ne based on the octupole deformation
in the context of the deformed shell model, I have to dis-
cuss the coupling of the valence particle to the reflection
symmetric deformed core. This will imply mixing of Nils-
son orbits (characterised by the quantum numbers [N,nz,
Λ, Ω]) with the same Λ and Ω, but differing in their prin-
cipal quantum numbers defined by the increments given
inside the brackets [N +1, nz(+,−)1]. In this context, the
members of the parity doublet should correspond to one
single-particle orbit of mixed parity: this is obtained by a
superposition of two Nilsson orbits with equal amplitudes
and the same K-value, but differing in parity. Thus, for
the reflection asymmetric case, the “strong” coupling be-
tween two orbits of equal amplitudes for the same values
of Λ and Ω = K must occur. This phenomenon is related
to the concept of hybridisation of valence orbitals, which
is well known in atoms and is discussed for nuclear cases
in refs. [5,11,8].

For the nuclear structure aspects I refer to the work
of Leander and Sheline [32], where the strong and weak
coupling scenarios are discussed and we use fig. 6 for the
further discussion. For the K = 1/2 band, these two or-
bits differing by [N + 1, nz(+,−)1] could be the [110,1/2]
and [220,1/2] configurations. As shown in the Nilsson di-
agram of fig. 6, however, these orbits are rather far sep-
arated in energy for reasonable deformation values. An-
other alternative is the mixing of the [220,1/2] orbit with
the [330,1/2] orbit, again this implies rather large defor-
mations, as can be seen from the plots shown in fig. 6.
As stated in many other cases, the nuclear structure as-
pects of strongly clustered configurations can, only with
great difficulty, be obtained in an alternative (deformed
shell model) basis, because large configuration mixing over
many shells has to be invoked.

Fig. 6. The Nilsson diagram for the nucleon orbitals in the
neon mass region, from ref. [32]. Note that the diagram is for
ε4 �= 0.

For the case of 20-21Ne a co-existence of cluster states
with pronounced octupole deformation and normal Nils-
son model configurations in the same excitation energy
range must be expected. Such circumstances may be typ-
ical also for weakly bound systems, where cluster configu-
rations appear close to and below the cluster decay thresh-
olds. The case of 22Ne will be discussed in later work, there
the cluster states should appear at higher excitation, the
thresholds being higher (see fig. 3). Due to the free combi-
nation of the two parity doublets in 21Ne for two valence
particles we can expect a “doubling of doublets” in 22Ne.
Actually, in recent work on resonances in the 18O + 4He
system by V. Goldberg [43] such phenomenon of close dou-
blets of states with the same parity has been observed.

5 Covalently bound molecules in the
isotopes 26-28Mg and conclusions

Having established the existence of rotational bands form-
ing parity doublets in 21Ne, we may extrapolate the con-
cept of covalent molecules to the ( α + 16O + α) sys-
tems. The corresponding cluster substructure in 24Mg
with 16O + 2α clusters is well known and usually shown
in the Ikeda diagram in a slightly different way. I show
in fig. 7 a reflection symmetric shape, where the two α-
particles are arranged on two opposite sites of the central
16O cluster. It is probably no surprise to find exactly such
shapes in the work of Merchant and Rae [44,45] based
on the cranked α-cluster model. Figure 2 and fig. 7 give
a schematic illustration of such forms, which are equiva-
lent to those shown in refs. [44,45]. The symmetric shapes
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Fig. 7. Schematic illustration of the structure of molecular
shape isomers in the neutron-rich isotopes of nuclei consisting
of α and 16O clusters, plus some covalently bound neutrons.
For the odd mass isotopes each K quantum number gives rise
to a parity doublet of bands due to the two signs of the signa-
ture. The splitting of these bands will be proportional to the
probability to “tunnel” from one configuration to the other,
given by the overlap ∆, as illustrated in fig. 2.

are expected at excitation energies well below the particle
thresholds due to the properties of the α + 16O poten-
tial (just like in 21Ne), which is fairly attractive at its
minimum. Such shapes can be described by a multipole
expansion with even parity, and the states are expected
to exhibit in addition to a large quadruple moment, large
l = 4 and l = 6 (and higher) moments. Similar to the case
of deformed nuclei in the rare earth region, these states
should also be populated in inelastic scattering. Figure 7
shows some more of the expected shapes in analogy to
the Ikeda diagram. The threshold energies for the separa-
tion into the cluster constituents plus neutrons are shown.
Covalent binding in the case of σ and π orbitals is ex-
pected to produce quasi-bound (isomeric states) with en-
ergies comparable to the α-neutron bond of the 21-22Ne
molecular states. This extended molecular Ikeda diagram
gives a guide-line to future work for nuclear spectroscopy
in light neutron-rich nuclei.

The author is indebted to H. Roepke for comments, and to A.
Tumino for preparing fig. 7.
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